Дифференциальные уравнения первого порядка.Примеры решений. Дифференциальные уравнения с разделяющимися переменными

Аватара пользователя
admin
Администратор
Сообщения: 7
Зарегистрирован: 18 авг 2018, 08:48
Откуда: Москва
Контактная информация:

Дифференциальные уравнения первого порядка.Примеры решений. Дифференциальные уравнения с разделяющимися переменными

Сообщение admin » 25 авг 2018, 16:15

Дифференциальные уравнения (ДУ). Эти два слова обычно приводят в ужас среднестатистического обывателя. Дифференциальные уравнения кажутся чем-то запредельным и трудным в освоении и многим студентам. Уууууу… дифференциальные уравнения, как бы мне всё это пережить?!

Такое мнение и такой настрой в корне неверен, потому что на самом деле ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ – ЭТО ПРОСТО И ДАЖЕ УВЛЕКАТЕЛЬНО. Что нужно знать и уметь, для того чтобы научиться решать дифференциальные уравнения? Для успешного изучения диффуров вы должны хорошо уметь интегрировать и дифференцировать. Чем качественнее изучены темы Производная функции одной переменной и Неопределенный интеграл, тем будет легче разобраться в дифференциальных уравнениях. Скажу больше, если у вас более или менее приличные навыки интегрирования, то тема практически освоена! Чем больше интегралов различных типов вы умеете решать – тем лучше. Почему? Придётся много интегрировать. И дифференцировать. Также настоятельно рекомендую научиться находить производную от функции, заданной неявно.

В 95% случаев в контрольных работах встречаются 3 типа дифференциальных уравнений первого порядка: уравнения с разделяющимися переменными, которые мы рассмотрим на этом уроке; однородные уравнения и линейные неоднородные уравнения. Начинающим изучать диффуры советую ознакомиться с уроками именно в такой последовательности, причём после изучения первых двух статей не помешает закрепить свои навыки на дополнительном практикуме – уравнения, сводящихся к однородным.

Есть еще более редкие типы дифференциальных уравнений: уравнения в полных дифференциалах, уравнения Бернулли и некоторые другие. Наиболее важными из двух последних видов являются уравнения в полных дифференциалах, поскольку помимо данного ДУ я рассматриваю новый материал – частное интегрирование.

Если у вас в запасе всего день-два, то для сверхбыстрой подготовки есть блиц-курс в pdf-формате.

Итак, ориентиры расставлены – поехали:

Сначала вспомним обычные алгебраические уравнения. Они содержат переменные и числа. Простейший пример: Изображение. Что значит решить обычное уравнение? Это значит, найти множество чисел, которые удовлетворяют данному уравнению. Легко заметить, что детское уравнение Изображение имеет единственный корень: Изображение. Для прикола сделаем проверку, подставим найденный корень в наше уравнение:
Изображение
Изображение – получено верное равенство, значит, решение найдено правильно.

Диффуры устроены примерно так же!

Дифференциальное уравнение первого порядка в общем случае содержит:
1) независимую переменную Изображение;
2) зависимую переменную Изображение (функцию);
3) первую производную функции: Изображение.

В некоторых уравнениях 1-го порядка может отсутствовать «икс» или (и) «игрек», но это не существенно – важно чтобы в ДУ была первая производная Изображение, и не было производных высших порядков – Изображение, Изображение

Что значит решить дифференциальное уравнение? Решить дифференциальное уравнение – это значит, найти множество всех функций, которые удовлетворяют данному уравнению. Такое множество функций часто имеет вид Изображение ( – произвольная постоянная), который называется общим решением дифференциального уравнения.

Пример 1

Решить дифференциальное уравнение Изображение
Полный боекомплект. С чего начать решение?

В первую очередь нужно переписать производную немного в другом виде. Вспоминаем громоздкое обозначение Изображение, которое многим из вас наверняка казалось нелепым и ненужным. В диффурах рулит именно оно!

Итак: Изображение
На втором шаге смотрим, нельзя ли разделить переменные? Что значит разделить переменные? Грубо говоря, в левой части нам нужно оставить только «игреки», а в правой части организовать только «иксы». Разделение переменных выполняется с помощью «школьных» манипуляций: вынесение за скобки, перенос слагаемых из части в часть со сменой знака, перенос множителей из части в часть по правилу пропорции и т.п.

Дифференциалы Изображение и Изображение – это полноправные множители и активные участники боевых действий. В рассматриваемом примере переменные легко разделяются перекидыванием множителей по правилу пропорции:
Изображение
Разумеется, интегралы нужно взять. В данном случае они табличные:
Изображение
Как мы помним, к любой первообразной приписывается константа. Здесь два интеграла, но константу достаточно записать один раз (т.к. константа + константа всё равно равна другой константе). В большинстве случаев её помещают в правую часть.

Строго говоря, после того, как взяты интегралы, дифференциальное уравнение считается решённым. Единственное, у нас «игрек» не выражен через «икс», то есть решение представлено в неявном виде. Решение дифференциального уравнения в неявном виде называется общим интегралом дифференциального уравнения. То есть, Изображение – это общий интеграл.

Ответ в такой форме вполне приемлем, но нет ли варианта получше? Давайте попытаемся получить общее решение.

Пожалуйста, запомните первый технический приём, он очень распространен и часто применяется в практических заданиях: если в правой части после интегрирования появляется логарифм, то константу во многих случаях (но далеко не всегда!) тоже целесообразно записать под логарифмом.

То есть, ВМЕСТО записи Изображение обычно пишут Изображение

Зачем это нужно? А для того, чтобы легче было выразить «игрек». Используем свойство логарифмов Изображение. В данном случае:
Изображение
Теперь логарифмы и модули можно убрать:
Изображение
Функция представлена в явном виде. Это и есть общее решение.

Ответ: общее решение: Изображение